55 Limits and Continuity
55.1 Introduction
Limits and Continuity are the cornerstones of calculus.
- A limit describes the value a function approaches as the input approaches a particular point.
- Continuity ensures the function has no breaks, jumps, or holes.
Mastering limits and continuity helps in solving calculus problems, evaluating indeterminate forms, and preparing for differentiation/integration.
55.2 Limits
55.2.1 Definition
If \(f(x)\) approaches a finite value \(L\) as \(x\) approaches \(a\), then \[ \lim_{x\to a} f(x)=L \]
55.2.2 Left-hand and Right-hand Limits
- Left-hand limit: \(\lim_{x\to a^-} f(x)\) (approaching from left).
- Right-hand limit: \(\lim_{x\to a^+} f(x)\) (approaching from right).
If both exist and are equal, then \(\lim_{x\to a} f(x)\) exists.
55.2.3 Standard Limits
- \(\lim_{x\to 0}\frac{\sin x}{x}=1\)
- \(\lim_{x\to 0}\frac{\tan x}{x}=1\)
- \(\lim_{x\to 0}\frac{1-\cos x}{x^2}=\tfrac{1}{2}\)
- \(\lim_{x\to 0}(1+x)^{1/x}=e\)
- \(\lim_{x\to 0}\frac{\ln(1+x)}{x}=1\)
- \(\lim_{x\to\infty}\Big(1+\frac{1}{x}\Big)^x=e\)
55.2.4 Indeterminate Forms
- \(\frac{0}{0}, \frac{\infty}{\infty}, 0\cdot\infty, \infty-\infty, 0^0, 1^\infty, \infty^0\).
- These require algebraic simplification, L’Hôpital’s Rule, or series expansion.
55.2.5 L’Hôpital’s Rule
If \(\lim_{x\to a} f(x)/g(x)\) gives \(\tfrac{0}{0}\) or \(\tfrac{\infty}{\infty}\), then \[ \lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)} \] (provided the latter limit exists).
55.3 Continuity
55.3.1 Definition
A function \(f(x)\) is continuous at \(x=a\) if: 1. \(f(a)\) is defined.
2. \(\lim_{x\to a} f(x)\) exists.
3. \(\lim_{x\to a} f(x)=f(a)\).
If these conditions hold for every \(a\) in domain, \(f(x)\) is continuous on that interval.
55.3.2 Types of Discontinuity
- Removable: hole in the curve (limit exists but \(f(a)\) missing/mismatched).
- Jump: left-hand and right-hand limits exist but are unequal.
- Infinite: function tends to \(\pm\infty\) at some point.
55.3.3 Important Theorems
- If \(f\) and \(g\) are continuous at \(a\), then \(f\pm g, f\cdot g, f/g\) (if \(g(a)\neq0\)) are continuous.
- Composition of continuous functions is continuous.
- Polynomial and exponential functions are continuous everywhere.
- Trigonometric functions are continuous in their domains.
55.4 Applications
- Evaluating tricky limits.
- Checking continuity before applying differentiation.
- Determining asymptotic behavior.
- Understanding function behavior in economics, physics, and probability.
55.5 Solved Examples
Example 1
Evaluate \(\lim_{x\to 0}\frac{\sin 5x}{x}\).
= \(5\lim_{x\to 0}\frac{\sin 5x}{5x}=5(1)=5\).
Example 2
Evaluate \(\lim_{x\to 0}\frac{e^x-1}{x}\).
= \(1\).
Example 3
Evaluate \(\lim_{x\to 0}\frac{\tan x-\sin x}{x^3}\).
Expand using series: \(\tan x=x+\tfrac{x^3}{3}+\cdots\), \(\sin x=x-\tfrac{x^3}{6}+\cdots\).
Numerator ≈ \(x+\tfrac{x^3}{3}-x+\tfrac{x^3}{6}=\tfrac{x^3}{2}\).
So limit = \(\tfrac{1}{2}\).
Example 4
Check continuity of \(f(x)=\begin{cases} x^2, & x\leq 1 \\ 2x-1, & x>1 \end{cases}\) at \(x=1\).
- Left limit at 1 = \(1^2=1\).
- Right limit at 1 = \(2(1)-1=1\).
- \(f(1)=1\).
Thus continuous at \(x=1\).
Example 5
Check continuity of \(f(x)=\frac{1}{x}\) at \(x=0\).
Function undefined at \(x=0\) → discontinuous.
Example 6
Evaluate \(\lim_{x\to \infty}\Big(1+\frac{2}{x}\Big)^x\).
= \(e^2\).
55.6 Practice Problems
- Evaluate \(\lim_{x\to 0}\frac{\sin 7x}{x}\).
- Evaluate \(\lim_{x\to 0}\frac{1-\cos x}{x^2}\).
- Check continuity of \(f(x)=|x|\) at \(x=0\).
- Evaluate \(\lim_{x\to 0}\frac{\ln(1+2x)}{x}\).
- Evaluate \(\lim_{x\to 0}\frac{x}{\tan x}\).
- Check continuity of \(f(x)=\frac{x^2-1}{x-1}\) at \(x=1\).
- Evaluate \(\lim_{x\to \infty}\frac{2x^2+3}{x^2-1}\).
- Determine type of discontinuity at \(x=0\) for \(f(x)=\frac{\sin x}{x}\).
- Check continuity of \(f(x)=\sin(1/x)\) at \(x=0\).
- Evaluate \(\lim_{x\to 0}\frac{e^{2x}-1}{x}\).
55.7 Answer Key (Concise)
- \(7\)
- \(1/2\)
- Continuous (both sides give 0).
- \(2\)
- \(1\)
- Simplify \(\frac{x^2-1}{x-1}=x+1\) (for \(x\neq1\)). Limit at 1 = 2. But \(f(1)\) undefined → removable discontinuity.
- \(\lim=2\)
- Continuous (limit exists and =1).
- Not continuous (oscillates).
- \(2\)
55.8 Summary
- Limit describes approach; continuity ensures smoothness.
- Standard limits and L’Hôpital’s rule essential for exams.
- Types of discontinuity: removable, jump, infinite.
- Continuous functions behave predictably and support differentiation.