45 Trigonometry
45.1 Introduction
Trigonometry, derived from the Greek trigonon (triangle) and metron (measure), studies the relationships between angles and sides of triangles.
Its scope extends far beyond geometry: it is crucial in physics, astronomy, engineering, navigation, and competitive exams.
For aptitude exams, the focus is on ratios, identities, transformations, equations, and applications like heights and distances.
45.2 Measurement of Angles
- Degree: \(360^\circ\) in a full circle, \(90^\circ\) in a right angle.
- Radian: Central angle subtended by arc equal to radius.
- Relation: \(180^\circ = \pi\) radians.
Conversions:
- Degrees → radians: multiply by \(\pi/180\).
- Radians → degrees: multiply by \(180/\pi\).
Examples:
- \(60^\circ = \pi/3\) radians.
- \(3\pi/4\) rad = \(135^\circ\).
45.3 Trigonometric Ratios
For right \(\triangle ABC\) with \(\angle A=\theta\): - \(\sin \theta = \tfrac{\text{opposite}}{\text{hypotenuse}}\)
- \(\cos \theta = \tfrac{\text{adjacent}}{\text{hypotenuse}}\)
- \(\tan \theta = \tfrac{\text{opposite}}{\text{adjacent}}\)
- \(\cot \theta = \tfrac{1}{\tan \theta}\)
- \(\sec \theta = \tfrac{1}{\cos \theta}\)
- \(\csc \theta = \tfrac{1}{\sin \theta}\)
45.4 Trigonometric Values of Standard Angles
\(\theta\) | \(0^\circ\) | \(30^\circ\) | \(45^\circ\) | \(60^\circ\) | \(90^\circ\) |
---|---|---|---|---|---|
\(\sin \theta\) | 0 | 1/2 | \(\tfrac{\sqrt{2}}{2}\) | \(\tfrac{\sqrt{3}}{2}\) | 1 |
\(\cos \theta\) | 1 | \(\tfrac{\sqrt{3}}{2}\) | \(\tfrac{\sqrt{2}}{2}\) | 1/2 | 0 |
\(\tan \theta\) | 0 | \(1/\sqrt{3}\) | 1 | \(\sqrt{3}\) | ∞ |
Also know values for \(120^\circ, 135^\circ, 150^\circ, 180^\circ\), etc.
45.5 Signs in Quadrants
Using “All Students Take Care” mnemonic:
- Quadrant I: all positive.
- Quadrant II: \(\sin,\csc\) positive.
- Quadrant III: \(\tan,\cot\) positive.
- Quadrant IV: \(\cos,\sec\) positive.
45.6 Fundamental Identities
- \(\sin^2\theta+\cos^2\theta=1\)
- \(1+\tan^2\theta=\sec^2\theta\)
- \(1+\cot^2\theta=\csc^2\theta\)
45.7 Co-function Relationships
- \(\sin(90^\circ-\theta)=\cos \theta\)
- \(\cos(90^\circ-\theta)=\sin \theta\)
- \(\tan(90^\circ-\theta)=\cot \theta\)
- \(\csc(90^\circ-\theta)=\sec \theta\)
- \(\sec(90^\circ-\theta)=\csc \theta\)
- \(\cot(90^\circ-\theta)=\tan \theta\)
45.8 Compound Angles
- \(\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B\)
- \(\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B\)
- \(\tan(A\pm B)=\frac{\tan A\pm\tan B}{1\mp\tan A\tan B}\)
45.9 Multiple and Sub-multiple Angles
- \(\sin 2A=2\sin A\cos A\)
- \(\cos 2A=\cos^2A-\sin^2A=2\cos^2A-1=1-2\sin^2A\)
- \(\tan 2A=\tfrac{2\tan A}{1-\tan^2A}\)
Half-angle:
- \(\sin^2(A/2)=\tfrac{1-\cos A}{2}\)
- \(\cos^2(A/2)=\tfrac{1+\cos A}{2}\)
45.10 Product-to-Sum and Sum-to-Product
- \(\sin A \sin B=\tfrac{1}{2}[\cos(A-B)-\cos(A+B)]\)
- \(\cos A \cos B=\tfrac{1}{2}[\cos(A-B)+\cos(A+B)]\)
- \(\sin A \cos B=\tfrac{1}{2}[\sin(A+B)+\sin(A-B)]\)
45.11 Trigonometric Equations
Solve using identities and periodicity.
Examples:
- \(\sin x=0 \Rightarrow x=n\pi\).
- \(\cos x=0 \Rightarrow x=\pi/2+n\pi\).
- \(\tan x=0 \Rightarrow x=n\pi\).
45.12 Graphs of Trigonometric Functions
- Sine: wave from \(-1\) to \(1\), period \(2\pi\).
- Cosine: same shape shifted left.
- Tangent: repeats every \(\pi\), with asymptotes.
Understanding graphs helps in inequalities and solving equations.
45.13 Heights and Distances
Trigonometry is used to calculate distances/heights indirectly.
- Angle of elevation: upwards from horizontal.
- Angle of depression: downwards from horizontal.
Example: A tower casts a shadow of 20 m when Sun’s elevation is \(30^\circ\).
Height = \(20\tan 30^\circ=20/\sqrt{3}\).
Types of problems: - Single tower, single angle.
- Single tower, two angles.
- Two objects (boats, poles, airplanes).
- Angles of elevation and depression combined.
45.14 Solved Examples
Example 1
If \(\sin A=3/5\), find \(\cos A\).
\(\cos A=\sqrt{1-\sin^2 A}=\sqrt{1-9/25}=4/5\).
Example 2
Solve \(\sin^2 x-\cos^2 x=0\).
\(\tan^2 x=1 \Rightarrow x=45^\circ,135^\circ,\dots\).
Example 3
From a point 48 m from the base of a tower, angle of elevation is \(30^\circ\).
Height = \(48\tan 30^\circ=16\sqrt{3}\) m.
45.15 Practice Set – Level 1
- Convert \(225^\circ\) into radians.
- Find \(\sin 45^\circ\cos 45^\circ\).
- If \(\tan \theta=5/12\), find \(\sin \theta\) and \(\cos \theta\).
- Simplify \(\frac{1-\cos 2A}{\sin^2 A}\).
- A tower casts 100 m shadow when Sun’s altitude is \(45^\circ\). Find height.
45.16 Practice Set – Level 2
- Solve \(\cos x=\sin x\).
- Find general solution of \(\tan^2 x=1\).
- Prove: \(\frac{1-\tan^2 A}{1+\tan^2 A}=\cos 2A\).
- A building subtends angles of elevation \(30^\circ\) and \(60^\circ\) at two points 50 m apart. Find height.
- Find value of \(\sin^2 18^\circ+\sin^2 72^\circ\).
45.17 Summary
- Trigonometry unites angles and ratios, essential for aptitude.
- Must know: identities, quadrant signs, compound/multiple angle formulas.
- Applications: heights, distances, navigation, oscillations.
- Solve with multipliers, diagrams, and identities for speed.
- Practice with both basic and advanced problems for exams.